The hydrodynamics of swimming microorganisms

نویسندگان

  • Eric Lauga
  • Thomas R Powers
چکیده

Cell motility in viscous fluids is ubiquitous and affects many biological processes, including reproduction, infection and the marine life ecosystem. Here we review the biophysical and mechanical principles of locomotion at the small scales relevant to cell swimming, tens of micrometers and below. At this scale, inertia is unimportant and the Reynolds number is small. Our emphasis is on the simple physical picture and fundamental flow physics phenomena in this regime. We first give a brief overview of the mechanisms for swimming motility, and of the basic properties of flows at low Reynolds number, paying special attention to aspects most relevant for swimming such as resistance matrices for solid bodies, flow singularities and kinematic requirements for net translation. Then we review classical theoretical work on cell motility, in particular early calculations of swimming kinematics with prescribed stroke and the application of resistive force theory and slender-body theory to flagellar locomotion. After examining the physical means by which flagella are actuated, we outline areas of active research, including hydrodynamic interactions, biological locomotion in complex fluids, the design of small-scale artificial swimmers and the optimization of locomotion strategies. (Some figures in this article are in colour only in the electronic version) This article was invited by Christoph Schmidt.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrodynamic phase locking of swimming microorganisms.

Some microorganisms, such as spermatozoa, synchronize their flagella when swimming in close proximity. Using a simplified model (two infinite, parallel, two-dimensional waving sheets), we show that phase locking arises from hydrodynamics forces alone, and has its origin in the front-back asymmetry of the geometry of their flagellar waveform. The time evolution of the phase difference between co...

متن کامل

Hydrodynamic attraction of swimming microorganisms by surfaces.

Cells swimming in confined environments are attracted by surfaces. We measure the steady-state distribution of smooth-swimming bacteria (Escherichia coli) between two glass plates. In agreement with earlier studies, we find a strong increase of the cell concentration at the boundaries. We demonstrate theoretically that hydrodynamic interactions of the swimming cells with solid surfaces lead to ...

متن کامل

Swimming of a model ciliate near an air-liquid interface.

In this work, the role of the hydrodynamic forces on a swimming microorganism near an air-liquid interface is studied. The lubrication theory is utilized to analyze hydrodynamic effects within the narrow gap between a flat interface and a small swimmer. By using an archetypal low-Reynolds-number swimming model called "squirmer," we find that the magnitude of the vertical swimming velocity is on...

متن کامل

Simulation and optimization of live fish locomotion in a biomimetic robot fish

This paper presents simplified hydrodynamics model for a biomimetic robot fish based on quantitative morphological and kinematic parameters of crangiform fish. The motion of four Pangasius sanitwongsei with different length and swimming speed were recorded by the digital particle image velocimetry (DPIV) and image processing methods and optimal coefficients of the motion equations and appropria...

متن کامل

A quantitative look into microorganism hydrodynamics

Microorganisms, such as bacteria, microphytes (tiny plants such as microscopic algae), and protists (a diverse group of single cell organisms), are present in every part of the biosphere: giant plankton blooms in the oceans, protozoa in our lakes and ponds, beneficial or pathogenic bacteria in our bodies are but a few examples that we are all familiar with. The ability of microorganisms to move...

متن کامل

تعیین وضعیت آلودگی آب استخرهای شهر ساری به استافیلوکوکوس اورئوس

Backgrounds and Objectives: Swimming pools water if not disinfected properly can be one of the infection sources of different microorganisms such as staphylococcus. This study is to aware the authorities and users about the conditions existed in sheltered swimming pools in Sari and to believe the contamination of the water there, related to the existence of staphylococcus aureus. Materials an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009